Skip to content

Model Training

Run the following command to start training a policy using your dataset. You can train your policy either on your local PC or on an NVIDIA Jetson Orin device.

a. NVIDIA Jetson Orin:

Open a new terminal and navigate to the lerobot directory:

bash
container
cd /root/colcon_ws/src/physical_ai_tools/lerobot

Then run the following command:

bash
python lerobot/scripts/train.py \
  --dataset.repo_id=${HF_USER}/ffw_test \
  --policy.type=act \
  --output_dir=outputs/train/act_ffw_test \
  --job_name=act_ffw_test \
  --policy.device=cuda \
  --log_freq=100 \
  --save_freq=1000

b. Your PC

First, follow the LeRobot installation instructions to set up the framework locally. Once installed, you can train the policy using the same command:

bash
python lerobot/scripts/train.py \
  --dataset.repo_id=${HF_USER}/ffw_test \
  --policy.type=act \
  --output_dir=outputs/train/act_ffw_test \
  --job_name=act_ffw_test \
  --policy.device=cuda \
  --log_freq=100 \
  --save_freq=1000

(Optional) Upload Checkpoint to Hugging Face

To upload the latest trained checkpoint to the Hugging Face Hub, run:

bash
huggingface-cli upload ${HF_USER}/act_ffw_test \
  outputs/train/act_ffw_test/checkpoints/last/pretrained_model

Model Inference

Launch the ROS 2 follower node:

bash
container
follower

To evaluate your trained policy, open a new terminal and navigate to the lerobot directory:

bash
container
cd /root/colcon_ws/src/physical_ai_tools/lerobot

Then run the following command. It will evaluate the policy using the record mode and save the results for visualization. Make sure to specify the pretrained checkpoint path using the --control.policy.path argument:

bash
python lerobot/scripts/control_robot.py \
  --robot.type=ffw \
  --control.type=record \
  --control.single_task="pick and place objects" \
  --control.fps=30 \
  --control.repo_id=${HF_USER}/eval_ffw_test \
  --control.tags='["tutorial"]' \
  --control.episode_time_s=20 \
  --control.reset_time_s=10 \
  --control.num_episodes=10 \
  --control.push_to_hub=true \
  --control.policy.path=outputs/train/act_ffw_test/checkpoints/last/pretrained_model \
  --control.play_sounds=false

AI Worker released under the Apache-2.0 license.